Investigation of False Learning in Adaptive Monte Carlo Transport

Henry Lichtenstein

August 15, 1996

- **■** Introduction
- o Preliminaries
- Demonstration of False Learning
- o An Avoidance Strategy
- o Diagnostics
- Summary

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

INTRODUCTION

False Learning (FL) in Adaptive Monte Carlo:

Learning falsely that a domain of phase space is a relatively unimportant contributor to the result; due to adaptively inadequate sampling. FL can lead to false convergence (i.e., convergence to a false result).

Demonstration of FL:

Contrive a transport problem that poses a potential FL situation, which requires *heroic a priori measures* (i.e., ultra conservative initial sampling) to avoid false convergence.

An Avoidance Strategy:

Strive to insure that no sequence of transitions, which could produce significant score, is ignored.

FL Diagnostics:

Computed feedback that, based on a comparison of known and estimated information, will suggest the presence of FL in the course of the calculation.

- Introduction
 - Preliminaries
- Demonstration of False Learning
- o An Avoidance Strategy
- o Diagnostics
- Summary

PRELIMINARIES

Testbed for Development of Algorithms:

A multi-state discrete Monte Carlo transport code, written previously by Tom Booth. Code adaptively iterates to zero-variance biasing:

$$q_{ij} = C_{i} p_{ij} (s_{ij} + m_{j}); transition from state_{i} to state_{j};$$

$$(for termination state_{0}, m_{0} = 0);$$

where

q = zero-variance biased transition (termination) probability;

p = unbiased transition (termination) probability;

s = corresponding transition (termination) score;

m = estimated mean;

C = normalization.

PRELIMINARIES (continued)

Reference (Benchmark) for Development of Algorithms:

Wrote code that iteratively computes analytic values of means for corresponding multi-state discrete Monte Carlo transport scenario, based on:

```
mean_i = SUMMATION_{(j=0,n)} \{p_{ij} * \{s_{ij} + mean_{j}\}\}
```

where n is number of states and state_ θ is termination (mean_ θ is θ).

Code computes analytic means within machine *double* precision, using internally computed criterion, *viz*.

```
subroutine epsil
   implicit double precision (a-h,o-z)
   common/epsilon/eps
c----- compute machine epsilon;
   eps=1.
   do 10 i=1,1000
   if(1.0+eps.eq.1.0)go to 20
10 eps=eps/2.0
20 eps=2.0*eps
   write(*,*)'machine epsilon=',eps
   return
   end
```

- Introduction
- Preliminaries
 - **Demonstration of False Learning**
- An Avoidance Strategy
- o Diagnostics
- Summary

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

FALSE LEARNING DEMONSTRATION

Zero-variance biased transition probabilities (beyond initial iteration):

$$q_{ij} = C_{i} p_{ij} (s_{ij} + m_{j}); (m_{\theta} = 0)$$

Contrive 2-state problem (source in state_1), with following (transition probabilities; associated scores):

With un-biased first iteration, compute:

Initial histories	Final m_1	Final m_2	False learning	Convergence
1,000,000 (insufficient!)	1.0081 (.0001)	(no estimate!)	initial_m_2=0> q_12=0	FALSE
10,000,000 (heroic?)	2.0263 (.0003)	1009.1 (.1)	AVOIDED	PROPER
analytic values	2.02632066	1009.08378	N/A	N/A

Henry Lichtenstein (hal@lanl.gov) www-xdiv.lanl.gov/XTM

"Investigation of False Learning in Adaptive Monte Carlo Transport"

- Introduction
- Preliminaries
- Demonstration of False Learning
 - An Avoidance Strategy
- o Diagnostics
- Summary

An AVOIDANCE STRATEGY

Rationale:

- Need to inspect *adequately* all states that contribute significant score.
- In general, adequate inspection of all states is impractical.
- A strategy that *tends* to inspect all states may be a useful first step.
- Given a finite first iteration, how can unbiased probabilities be modified to have such tendency?

Test Strategy:

- Modify Booth's multi-state code to allow biasing for first iteration.
- Investigate uniform-biased a priori transition probabilities.

An AVOIDANCE STRATEGY (continued)

Test Scenario:

- Restrict transitions to a contiguous state or termination only, with source in state_1.
- Disallowing other (including in-state) transitions merely accelerates testing.
- Assign 0.1 probability for all state-to-state transitions.
- Assign remaining probability to termination (0.9 for "end" state or 0.8 for "interior" state).
- For source state_1, assign score of 1.0 for termination; 0.0 score for transition to state 2.
- For all states_j, j > 1, assign score of 100.0 for "downscattering" to state_j-1; 0.0 score otherwise.

Medium is relatively opaque to arrival at higher states. Higher states contribute score, hence difficult FL avoidance.

An AVOIDANCE STRATEGY (continued)

An Example Scenario:

For a 6-state scenario having prescribed (transition; scoring) properties, state-to-state matrix is:

```
i=0
                         i=2
                                    i=3
             i=1
                                                i=4
                                                           i=5
                                                                       i=6
i=1 (.9; 1.) (.0; 0.)
                         (.1; 0.)
                                    (.0; 0.)
                                                (.0; 0.)
                                                           (.0; 0.)
                                                                       (.0; 0.)
i=2 (.8; 0.) (.1; 100.) (.0; 0.)
                                    (.1; 0.)
                                                (.0; 0.)
                                                           (.0; 0.)
                                                                      (.0; 0.)
i=3 (.8; 0.) (.0; 0.)
                       (.1; 100.) (.0; 0.)
                                                (.1; 0.)
                                                           (.0; 0.)
                                                                       (.0; 0.)
i=4 (.8; 0.) (.0; 0.)
                         (.0; 0.)
                                    (.1; 100.) (.0; 0.)
                                                           (.1; 0.)
                                                                       (.0; 0.)
i=5 (.8; 0.) (.0; 0.)
                         (.0; 0.)
                                    (.0; 0.)
                                                (.1; 100.) (.0; 0.)
                                                                       (.1; 0.)
i=6 (.9; 0.) (.0; 0.)
                                    (.0; 0.)
                         (.0; 0.)
                                                (.0; 0.)
                                                           (.1; 100.) (.0; 0.)
```

source in state_1; termination is state_0

"Conditions of contest" for investigation:

- 1. Seek threshold number of histories required in first (*i.e.*, *a* priori learning) iteration to compute non-zero mean for every state.
- 2. Incrementing algorithm: try 10x histories every time *known* non-zero mean is computed as zero.

An AVOIDANCE STRATEGY (continued)

Comparison of threshold number of histories in initial iteration (i.e., a priori learning stage) required to avoid learning falsely that a known non-zero mean is zero:

# of States	Threshold histories for	Threshold histories for
	a priori un-biased	a priori uniform-biased
2	100	10
3	1,000	10
4	100,000	100
5	100,000	100
6	10,000,000	1,000

Conjecture:

Tendency to inspect all states has tendency to avoid FL.

Henry Lichtenstein (hal@lanl.gov) www-xdiv.lanl.gov/XTM

''Investigation of False Learning in Adaptive Monte Carlo Transport''

- Introduction
- Preliminaries
- Demonstration of False Learning
- An Avoidance Strategy
 - Diagnostics
- Summary

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

DIAGNOSTICS

Desired Attributes for FL Diagnostic Flag:

- *True* indicator of FL presence; (tautology, but important to note);
- Succinct (for easy comprehension); one number or small set (such as MCNP statistical tests);
- Computable without undue diversion of resources from main calculation;
- *Ideally*, would *appear* in FL presence; *vanish* in FL absence; *less-than-ideally*, diminished magnitude in FL absence;

Recall that FL is introduced when undersample scoring-transitions; FL enhanced when undersampled-scoring relatively large. This suggests basis for FL flag:

Comparison between *computed* and *theoretical* values of state-to-state branching weight, perhaps *weighted* by associated scores.

Suggested basis for FL flag recognizes that, although the global solution is unknown, local behavior is known.

DIAGNOSTICS (continued)

Initial Definition of an FL Diagnostic Flag:

Let S_c be the *estimated* quantity

$$S_c = SUM_(i=1,n) SUM_(j=0,n) \{(b_ij)*(s_ij)/(w_i)\};$$

let S_t be the known quantity

$$S_t = SUM_i = 1,n SUM_j = 0,n \{(p_i) * (s_i)\}.$$

Then define FL flag to be:

$$flag = 1 - S_c/S_t$$

where n is number of discrete states (state_0 is termination); w_i is total weight entering state_i; b_ij is weight branching from state_i to state_j; p_ij is transition probability from state_i to state_j; s_ij is associated score; and i.ne.k for w_k = 0. Note flag is single computed quantity, independent of n.

Flag vanishes for $S_c = S_t$, which is unlikely in presence of FL, for small # of non-zero s_j .

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

DIAGNOSTICS (continued)

Test of Initial Definition for an FL Flag

Test Scenario: tight coupling between contiguous states; source in state_1; termination prob = .4 in all states; transition (to nearest neighbor) prob = .3 (.6 for end states); score = 1 for termination in highest state (state_n, where n varies from 2 to 8 in this test). Machine epsilon, eps = 2.2e-16; state_m has max %_rel.

n_states	state_1	(%_rel)	state_m	(%_rel)	state_n	(%_rel)	(flag)
2	0.37500	(.005)	0.62500	(.01)	0.62500	(.01)	(+.02)
	0.374999	eps	0.624999	eps	0.624999	eps	
3	0.11250	(.01)	0.51251	(.02)	0.51251	(.02)	(02)
	0.112499	eps	0.512499	eps	0.512499	eps	
4	0.037088	(.009)	0.16896	(.01)	0.50137	(.004)	(+.01)
	0.0370879	eps	0.168956	eps	0.501373	eps	
5	0.012347	(.01)	0.012347	(.01)	0.50015	(.002)	(0003)
	0.0123475	eps	0.0123475	eps	0.500152	eps	
6	0.0041153	(800.)	0.55633	(.01)	0.50002	(.01)	(02)
	0.00411529	eps	0.556327	eps	0.500016	eps	
7	0.0013717	(.009)	0.62490	(.02)	0.50000	(.003)	(+.01)
	0.00137174	eps	0.624905	eps	0.500000	eps	
8	0.00045725	(800.)	0.61813	(.01)	0.500000	(.002)	(02)
	0.000457250	eps	0.618130	eps	0.5000000	eps	
		_				_	

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

DIAGNOSTICS (continued)

Test of Initial Definition for an FL Flag (continued)

Modified Test Scenario: same as initial, except for state_n, which has termination prob = .999 and transition (to lower neighbor) prob = .001; score for transition = 400. Encourages FL.

n_states	state_1	(%_rel)	state_m	(%_rel)	state_n	(%_rel)	(flag)
2	0.40000	(.02)	0.40000	(.02)	no estimate	N/A	(+.5)
	0.640384	eps	0.640384	eps	0.400640	eps	
3	0.48780	(.02)	0.14634	(.01)	no estimate	N/A	(+ .5)
	0.575674	eps	0.292790	eps	0.400292	eps	
4	0.49863	(.005)	0.16438	(.01)	no estimate	N/A	(+.5)
	0.528232	eps	0.213721	eps	0.400184	eps	
5	0.49984	(.003)	0.548612	(.01)	no estimate	N/A	(+ .5)
	0.509726	eps	0.9986447	eps	0.4001500	eps	
6	0.500000	(.0006)	0.16663	(.01)	no estimate	N/A	(+ .5)
	0.5032763	eps	0.172127	eps	0.400138	eps	
7	0.500000	(.0003)	0.6098	(.03)	no estimate	N/A	(+.5)
	0.5010958	eps	0.50562	eps	0.400135	eps	
8	0.5000002	(.00006)	0.18296	(.01)	no estimate	N/A	(+ .5)
	0.50036571	eps	0.046492	eps	0.400133	eps	
				A			A

Workshop on Adaptive Monte Carlo Methods (August 1996) "Investigation of False Learning in Adaptive Monte Carlo Transport"

DIAGNOSTICS (continued)

Test of Initial Definition for an FL Flag (continued)

Modified Test Scenario: same as preceding, except use a priori uniform biasing to avoid FL.

n_states	state_1	(%_rel)	state_m	(%_rel)	state_n	(%_rel)	(flag)
2	0.64038	(.01)	0.64038	(.01)	0.40064	(.009)	(002)
	0.640384	eps	0.640384	eps	0.400640	eps	
3	0.57568	(.01)	0.29280	(.01)	0.40029	(.01)	(001)
	0.575674	eps	0.292790	eps	0.400292	eps	
4	0.52823	(.01)	0.52823	(.01)	0.40018	(.01)	(+.001)
	0.528232	eps	0.528232	eps	0.400184	eps	
5	0.50973	(.006)	0.40015	(.02)	0.40015	(.02)	(002)
	0.509726	eps	0.400150	eps	0.400150	eps	
6	0.50327	(.009)	0.40014	(.01)	0.40014	(.01)	(+ .006)
	0.503276	eps	0.400138	eps	0.400138	eps	
7	0.50105	(.01)	0.40014	(.02)	0.40014	(.02)	(002)
	0.501095	eps	0.400135	eps	0.400135	eps	
8	0.50036	(.004)	0.020985	(.02)	0.40013	(.01)	(003)
	0.500365	eps	0.0209864	eps	0.400133	eps	
				A			

FL DIAGNOSTICS (continued)

FOLLOW-ON WORK

FL diagnostics, based on estimates of cumulative branching fractions, will probably prove inadequate for large numbers of scoring states:

- Search for alternative flag-basis that can function well, independent of number of states.
- Extend diagnostics algorithms to continuous transport scenarios.

Henry Lichtenstein (hal@lanl.gov) www-xdiv.lanl.gov/XTM

- Introduction
- Preliminaries
- Demonstration of False Learning
- An Avoidance Strategy
- Diagnostics
 - **Summary**

''Adaptation of von Neumann to Lesser Mortal Implies Presence of False Learning''

SUMMARY

• Straightforward to contrive and demonstrate FL for zero-variance biasing:

$$\mathbf{q}_{ij} = \mathbf{C}_{i} \mathbf{p}_{ij} (\mathbf{s}_{ij} + \mathbf{m}_{j})$$

- 1. Specify a significant score, i.e., $s_jk > 0$,
- 2. for one low-probability transition from state_j, i.e., $p_{jk} << 1$,
- 3. to effect initial-estimate of m_j as 0,
- 4. (from that phase-space region, *i.e.*, state_*j*),
- 5. which has no associated-score upon entry from state_i, i.e., $s_{-}ij = 0$,
- 6. whereby q_ij set to 0 (= FL), which leads to false convergence.
- Some evidence that *tendency* to inspect all states has *tendency* to avoid FL.
- Basis for FL diagnostics is recognition that, although *global* solution is unknown, local behavior is known.